Abstract

A MP2/6-31G* direct dynamics simulation is used to study the dynamics of the central barrier [Cl-C2H5-Cl]– for the Cl– + C2H5 SN2 reaction. The majority of the trajectories move off the central barrier to form the Cl––C2H5Cl complex and appear to undergo efficient IVR as assumed by RRKM theory. However, some of the trajectories move directly to products without forming the complex, a non-RRKM result. A hydrogen atom link-atom QM/MM model is described for studying the dynamics of [X-CH2R-Y]– central barriers with the -R substituent. The model is used to calculate vibrational frequencies for the [Cl-C2H5-Cl]– central barrier.Key words: SN2 reaction dynamics, RRKM theory, QM/MM model, central barrier dynamics, direct dynamics classical trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call