Abstract

Thermodynamic and kinetic parameters for the oxidative addition of H2 to [Rh(I)(bpy)2]+ (bpy = 2,2'-bipyridine) to form [Rh(III)(H)2(bpy)2]+ were determined from either the UV-vis spectrum of equilibrium mixtures of [Rh(I)(bpy)2]+ and [Rh(III)(H)2(bpy)2]+ or from the observed rates of dihydride formation following visible-light irradiation of solutions containing [Rh(III)(H)2(bpy)2]+ as a function of H2 concentration, temperature, and pressure in acetone and methanol. The activation enthalpy and entropy in methanol are 10.0 kcal mol(-1) and -18 cal mol(-1) K(-1), respectively. The reaction enthalpy and entropy are -10.3 kcal mol(-1) and -19 cal mol(-1) K(-1), respectively. Similar values were obtained in acetone. Surprisingly, the volumes of activation for dihydride formation (-15 and -16 cm(3) mol(-1) in methanol and acetone, respectively) are very close to the overall reaction volumes (-15 cm(3) mol(-1) in both solvents). Thus, the volumes of activation for the reverse reaction, elimination of dihydrogen from the dihydrido complex, are approximately zero. B3LYP hybrid DFT calculations of the transition-state complex in methanol and similar MP2 calculations in the gas phase suggest that the dihydrogen has a short H-H bond (0.823 and 0.810 Angstroms, respectively) and forms only a weak Rh-H bond (1.866 and 1.915 Angstroms, respectively). Equal partial molar volumes of the dihydrogenrhodium(I) transition state and dihydridorhodium(III) can account for the experimental volume profile found for the overall process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.