Abstract

A combination of inter- and intramolecular 13C kinetic isotope effects and density functional theory analysis is used to evaluate the key mechanistic events of sequentially operating catalytic cycles in the dual photoredox-cobalt-catalyzed elimination of alkyl bromides. The results point to a mechanism proceeding via irreversible halogen-atom transfer (XAT) from the alkyl halide, resulting in an alkyl radical, which undergoes hydrogen-atom transfer (HAT) to a Co(II) intermediate to deliver the product olefin. Alternative pathways involving nucleophilic substitution by a Co(I) species and by β-hydride elimination are discounted based on the poor agreement of experimental and predicted 13C KIEs. This mechanistic understanding is used to evaluate the origins of regioselectivity in the elimination step for an unsymmetrical alkyl halide catalyzed by electronically and sterically distinct cobaloxime catalysts. This study represents the experimental validation of the key features of the transition state structure of XAT by α-aminoalkyl radicals, an important class of atom transfer reactions that generate carbon-centered radicals from alkyl and aryl halides. Furthermore, it illustrates the power of 13C KIEs in probing complex mechanisms in metallaphotoredox catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.