Abstract

The transitionless tracking (TT) algorithm enables the exact tracking of quantum adiabatic dynamics in an arbitrary short time by adding a counterdiabatic Hamiltonian to the original adiabatic Hamiltonian. By applying Husimi's method originally developed for a quantum parametric oscillator (QPO) to the transitionless QPO achieved using the TT algorithm, we obtain the transition probability generating function with a time-dependent parameter constituted with solutions of the corresponding classical parametric oscillator (CPO). By obtaining the explicit solutions of this CPO using the phase-amplitude method, we find that the time-dependent parameter can be reduced to the frequency ratio between the Hamiltonians without and with the counterdiabatic Hamiltonian, from which we can easily characterize the result achieved by the TT algorithm. We illustrate our theory by showing the trajectories of the CPO on the classical phase space, which elucidate the effect of the counterdiabatic Hamiltonian of the QPO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.