Abstract

The problem of orbital relaxation in computational core-hole spectroscopies, including x-ray absorption and x-ray photoionization, has long plagued linear response approaches, including equation-of-motion coupled cluster with singles and doubles (EOM-CCSD). Instead of addressing this problem by including additional electron correlation, we propose an explicit treatment of orbital relaxation via the use of "transition potential" reference orbitals, leading to a transition-potential coupled cluster (TP-CC) family of methods. One member of this family, in particular, TP-CCSD(12), is found to essentially eliminate the orbital relaxation error and achieve the same level of accuracy for the core-hole spectra as is typically expected of EOM-CCSD in the valence region. These results show that very accurate x-ray absorption spectra for molecules with first-row atoms can be computed at a cost essentially the same as that for EOM-CCSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.