Abstract

Boundary layer measurements have been made on the concave surfaces of two constant curvature blades using hot wire anemometry. All the current experiments were performed with negligible streamwise pressure gradient. Grids were used to produce a range of freestream turbulence levels between 1% and 4%. The freestream velocity increases with distance from a concave wall according to the free vortex condition making the determination of the boundary layer edge difficult. A flat plate equivalent boundary layer procedure was adopted, therefore, to overcome this problem. The Taylor–Goertler (TG) vortices resulting from the concave curvature were found to make the laminar and turbulent boundary layer profiles fuller and to increase the skin friction coeffiicent by up to 40% compared with flat plate values. This leads to a more rapid growth in boundary layer thickness. The evolution in the intermittency through transition is very similar to that for a flat plate, however, the shape factors are depressed slightly throughout the flow due to the fuller velocity profiles. For all the current experiments, curvature promoted transition. This was very marked at low freestream turbulence level but remained significant even at the highest levels. It appears that the velocity fluctuations associated with the TG vortices enhance the freestream turbulence resulting in a higher effective turbulence level. A new empirical correlation for start of transition based on this premise is presented. The ratio of end to start of transition momentum thickness Reynolds numbers was found to be approximately constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.