Abstract

Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call