Abstract
During spermiogenesis of Sepia officinalis histones are directly substituted by a molecule of precursor protamine, which is later transformed into the protamine through a deletion of the amino terminal end. In the present work, it is shown that the pattern of spermiogenic chromatin condensation consists of a phase of "patterning" and a phase of "condensation." In the phase of patterning, three structural remodelings are produced in the chromatin structure: [somatic-like chromatin --> 18 nm granules --> 25 nm fibers --> 44 nm fibers]. The first remodeling of the chromatin into granules of 18 nm takes place without the entrance of specific proteins in the spermiogenic nuclei. The second remodeling [granules of 18 nm --> fibers of 25 nm] is due to the entrance of the precursor protamine and its interaction with the DNA-histone complex. The third remodeling [fibers of 25 nm --> fibers of 44 nm] occurs simultaneously with the disappearance of histones from the chromatin. In the phase of condensation, the fibers of 44 nm coalesce among themselves to form progressively larger aggregates of chromatin. In this phase there are no substantial variations in the nuclear proteins, so that the condensation of the chromatin must respond to posttranscriptional changes of the precursor protamine (dephosphorylation, deletion of the amino-terminal end).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.