Abstract

Nowadays, oxide-based diluted magnetic semiconductor nanoparticles are the most reliable compounds, wherein they accommodate both spin as well as charge of the electron in single domain, means most preferable for the fabrication of spintronic devices. In this view, we report on new Ce1−xNixO2 (x = 0.00, 0.02, 0.04, 0.06, and 0.08) nanoparticles prepared by precipitation method via polyethylene glycol as a surfactant. XRD analysis revealed that all the synthesized nanoparticles were crystallized in distinct FCC fluorite structure as that of CeO2 host lattice. Transmission electron microscopy analysis confirmed that all the synthesized samples were in spherical shape with average particle size of 8–10 nm, which is well concord with the grain size estimated from the Scherrer formula. The vibrating sample magnetometer evaluations suggested that pristine host lattice shows signals of paramagnetism; meanwhile, Ni substitution CeO2 nanoparticles exhibits strong ferromagnetism at room temperature. Particularly, 4% Ni-doped CeO2 samples shows enhanced ferromagnetism and which is suppressed with raising dopant concentration. The perceived magnetization with respect to the Ni dopant concentration is well anticipated by F-center exchange mechanism. We expect that the observations in this research suggest suitable path for preparing of various oxide-based diluted magnetic semiconductor nanoparticles and their applications in fabrication of spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.