Abstract

Self-assembled structures from aromatic dipeptides have attracted a lot of attention. It is highly desirable to produce dipeptide assemblies which undergo structural transitions in response to external stimuli. In this paper, solid nanospheres were successful produced from the self-assembly of chemically modified diphenylalanine in hexafluoroisopropanol (HFIP), a highly polar solvent. Interestingly, after treatment with water, the nanospheres were transformed into nanofibers. The intermediate transition state of nanospheres embedded along the nanofibers was captured by atomic force microscopy (AFM) imaging. In addition, AFM-based nanomechanical measurement revealed the increased stiffness after the transition, suggesting enhanced molecular packing due to favoured intermolecular interactions in water. This study presents a new method to fabricate novel dipeptide structures and provides new information for understanding the mechanism of dipeptide self-assembly driving by intermolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.