Abstract

The paper addresses modelling concepts based on the RANS equations for laminar-turbulent transition prediction in general-purpose CFD codes. Available models are reviewed, with emphasis on their compatibility with modern CFD methods. Requirements for engineering transition models suitable for industrial CFD codes are specified. A new concept for transition modeling is introduced. It is based on the combination of experimental correlations with locally formulated transport equations. The concept is termed LCTM – Local Correlation-based Transition Model. An LCTM model, which satisfies most of the specified requirements is described, including results for a variety of different complex applications. An incremental approach was used to validate the model, first on 2D flat plates and airfoils and then on to progressively more complicated test cases such as a three-element flap, a 3D transonic wing and a full helicopter configuration. In all cases good agreement with the available experimental data was observed. The authors believe that the current formulation is a significant step forward in engineering transition modeling, as it allows the combination of transition correlations with general purpose CFD codes. There is a strong potential that the model will allow the 1st order effects of transition to be included in everyday industrial CFD simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call