Abstract

Steady blowing vortex generating jets (VGJ) on highly-loaded low-pressure turbine profiles have shown to be a promising way to decrease total pressure losses at low Reynolds-numbers by reducing laminar separation. In the present paper, the state of the art turbomachinery design code TRACE with RANS turbulence closure and coupled γ-ReΘ transition model is applied to the prediction of typical aerodynamic design parameters of various VGJ configurations in steady simulations. High-speed cascade wind tunnel experiments for a wide range of Reynolds-numbers, two VGJ positions, and three jet blowing ratios are used for validation. Since the original transition model overpredicts separation and losses at Re2is≤100·103, an extra mode for VGJ induced transition is introduced. Whereas the criterion for transition is modeled by a filtered Q vortex criterion the transition development itself is modeled by a reduction of the local transition-onset momentum-thickness Reynolds number. The new model significantly improves the quality of the computational results by capturing the corresponding local transition process in a physically reasonable way. This is shown to yield an improved quantitative prediction of surface pressure distributions and total pressure losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.