Abstract

Diamonds grown using a cobalt/iron catalyst and annealed at 1800°C were studied using two experimental techniques. A zero-phonon line, observed in photoluminescence at 2.367eV, showed the splitting under uniaxial stress characteristic of an optical transition at a defect of trigonal symmetry. The same samples were measured by electron paramagnetic resonance (EPR) spectroscopy where they showed the defect labelled O4. This centre contains cobalt and possibly nitrogen, but has monoclinic symmetry. Ab initio modelling using the local density approach (LDA) with the code AIMPRO suggests that the optical transition is at a defect consisting of neighbouring substitutional cobalt and nitrogen atoms. A plausible model for the EPR data is a cobalt atom at the centre of a divacancy with a neighbouring nitrogen atom. We conclude that the defects giving rise to the 2.367eV photoluminescence and EPR O4 centres are both simple cobalt–nitrogen pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.