Abstract

Despite the importance of alkaline seafloor hydrothermal vents in broadening our understanding of deep-sea hydrothermal ecosystems, little is known about the mobility and concentrations of micronutrient transition metals in these environments. Here, we present new analyses of micronutrient transition metal concentrations in vent fluids from the iconic Lost City Hydrothermal Field (LCHF) and report concentrations of Fe = 2.9–18.3 µmol/kg, Zn = 1.30–5.86 µmol/kg, Cu = 0.43–5.06 µmol/kg, Ni = 86.4–556 nmol/kg, Mn = 8.3–274 nmol/kg, V = 25.9–127 nmol/kg, Mo = 24–94 nmol/kg, Co = 8.0–135 nmol/kg, W = 4.8–16 nmol/kg, and Cd = 1.7–4.5 nmol/kg. We additionally present results of a hydrothermal lherzolite alteration experiment conducted at 300 °C, 500 bar. Transition metal concentrations and major chemical parameters of experimental reaction fluids are broadly similar to LCHF vent fluids, indicating that transition metal concentrations in LCHF vent fluids, and alkaline hydrothermal fluids more generally, reflect metal solubility controlled by underlying rock-buffered hydrothermal reactions.Concentrations of Ni and Mo are especially noteworthy because of their recognized importance for biological methanogenesis (Ni) and nitrogen fixation (Mo). When compared with known biological thresholds, our findings indicate that Ni concentrations in LCHF vent fluids are sufficient to support the robust methane-metabolizing microbial communities observed in the immediate vicinity of LCHF vents and suggest that Ni availability influences the spatial distribution of LCHF methanogens. Furthermore, our laboratory hydrothermal experiments demonstrate that Mo concentrations of similar magnitude to those observed in LCHF vent fluids (and also modern seawater) can be obtained by hydrothermal alteration of ultramafic rocks with Mo-free (Na, Ca) Cl aqueous solution. Thus, we conclude that alkaline hydrothermal fluids were likely similarly enriched in Mo prior to oxidation of the Earth’s atmosphere and ocean, providing localized Mo-rich geochemical environments capable of supporting Mo-dependent nitrogen fixation at currently recognized threshold concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.