Abstract

Ground and excited electronic states of V(NH3)0,±6 complexes, investigated with ab initio electronic structure theory, consist of a V(NH3)62+ core with up to three electrons distributed over its periphery. This result extends the concept of super-atomic, solvated-electron precursors from alkali and alkaline-earth complexes to a transition metal. In the approximately octahedral ground state of V(NH3)6, three unpaired electrons occupy 3dxz, 3dyz and 3dxy (t2g) orbitals of vanadium and two electrons occupy a diffuse 1s outer orbital. The lowest excitations involve promotion of diffuse 1s electrons to 1p or 1d diffuse orbitals, followed by a 3d (t2g → eg) transition. V(NH3)6+ is produced by removing a diffuse 1s electron, whereas the additional electron in V(NH3)6- populates a 1p diffuse orbital. The adiabatic ionization energy and electron affinity of V(NH3)6 equal 3.50 and 0.48 eV, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.