Abstract

A number of Fe(III) complexes of saccharides and their derivatives, and those of ascorbic acid were synthesized, and characterized by a variety of analytical, spectral (FT-IR, UV–Vis, EPR, Mössbauer and EXAFS), magnetic and electrochemical techniques. Results obtained from various methods have shown good correlations. Data obtained from EPR, magnetic susceptibility and EXAFS techniques could be fitted well with the mono-, di- and trinuclear nature of the complexes. The solution stability of these complexes has been established using UV–Vis absorption and cyclic voltammetric techniques as a function of pH of the solution. Mixed valent, Fe(II,III) ascorbate complexes have also been synthesized and characterized. Reductive release of Fe(II) from the complexes using sodium dithionite has been addressed. In vitro absorption of Fe(III)–glucose complex has been studied using everted sacs of rat intestines and the results have been compared with that of simple ferric chloride. Fe(III)–saccharide complexes have shown regular protein synthesis even in hemin-deficient rabbit reticulocyte lysate indicating that these complexes play a role that is equivalent to that played by hemin in order to restore the normal synthesis of protein. These complexes have exhibited enhanced DNA cleavage properties in the presence of hydrogen peroxide with pUC-18 DNA plasmid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.