Abstract

Employing transition metal catalysts (TMCs) to perform bioorthogonal activation of prodrugs and pro-fluorophores in biological systems, particularly in a conditional fashion, remains a challenge. Here, we used a mesoporous organosilica nanoscaffold (RuMSN), which localizes Ru(II) conjugates on the pore wall, enabling the biorthogonal photoreduction reactions of azide groups. Due to easily adjustable surface charges and pore diameter, this efficiently engineering RuMSN catalyst, with abundant active sites on the inner pore well, could spontaneously repel or attract substrates with different molecular sizes and charges and thus ensure selective bioorthogonal catalysis. Depending on it, engineering RuMSN nanoreactors showed fascinating application scales from conditional bioorthogonal activation of prodrugs and pro-fluorophores in either intra- or extracellular localization to performing intracellular concurrent and tandem catalysis together with natural enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.