Abstract

Lithium-sulfur batteries (LSBs) with ultra-high energy density (2600Whkg-1) and readily available raw materials are emerging as a potential alternative device with low cost for lithium-ion batteries. However, the insulation of sulfur and the unavoidable shuttle effect leads to slow reaction kinetics of LSBs, which in turn cause various roadblocks including poor rate capability, inferior cycling stability, and low coulombic efficiency. The most effective way to solve the issues mentioned above is to rationally design and control the synthesis of the cathode host for LSBs. Transition metal phosphides (TMPs) with good electrical conductivity and dual adsorption-conversion capabilities for polysulfide (PS) are regarded as promising cathode hosts for new-generation LSBs. In this review, the main obstacles to commercializing the LSBs and the development processes of their cathode host are first elaborated. Then, the sulfur fixation principles, and synthesis methods of the TMPs are briefly summarized and the recent progress of TMPs in LSBs is reviewed in detail. Finally, a perspective on the future research directions of LSBs is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.