Abstract

Energy profiles for olefin epoxidation with the cationic [Mn(acacen‘)]+ catalyst (acacen‘ = -O(CH)3N−C2H4−N(CH)3O- ) have been calculated using pure (BP86) and hybrid (B3LYP) density functional methodologies. For the reaction, triplet and quintet energy hyper surfaces have been considered. The BP86 calculations allow for a rationalization of a reaction occurring under spin conservation. On the other hand, the B3LYP calculations suggest a reaction profile involving an early spin-crossing step, strongly supporting two-state reactivity. Further, the BP86 calculations suggest the existence of a metallacycle as possible reaction intermediate, a proposition not supported by the B3LYP approach. The two different computational approaches result not only in a quantitatively, but also in a qualitatively different description of the epoxidation reaction. This in turn implies different models for chirality transfer associated with related reactions employing chiral catalytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.