Abstract

This report demonstrates that transition metal ions and selenite affect the arsenite methylation by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) in vitro. Co(2+), Mn(2+), and Zn(2+) inhibited the arsenite methylation by hAS3MT in a concentration-dependent manner and the kinetics indicated Co(2+) and Mn(2+) to be mixed (competitive and non-competitive) inhibitors while Zn(2+) to be a competitive inhibitor. However, only a high concentration of Fe(2+) could restrain the methylation. UV-visible, CD and fluorescence spectroscopy were used to study the interactions between the metal ions above and hAS3MT. Further studies showed that neither superoxide anion nor hydrogen peroxide was involved in the transition metal ion or selenite inhibition of hAS3MT activity. The inhibition of arsenite methylating activity of hAS3MT by selenite was reversed by 2mM DTT (dithiothreitol) but neither by cysteine nor by beta-mercaptoethanol. Whereas, besides DTT, cysteine can also prevent the inhibition of hAS3MT activity by Co(2+), Mn(2+), and Zn(2+). Free Cys residues were involved in the interactions of transition metal ions or selenite with hAS3MT. It is proposed that the inhibitory effect of the ions (Co(2+), Mn(2+), and Zn(2+)) or selenite on hAS3MT activity might be via the interactions of them with free Cys residues in hAS3MT to form inactive protein adducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call