Abstract

Two-dimensional (2D) metal-organic framework (MOF) materials with large perpendicular magnetic anisotropy energy (MAE) are important candidates for high-density magnetic storage. The MAE-targeted high-throughput screening of 2D MOFs is currently limited by the time-consuming electronic structure calculations. In this study, a machine learning model, namely, transition-metal interlink neural network (TMINN) based on a database with 1440 2D MOF materials is developed to quickly and accurately predict MAE. The well-trained TMINN model for MAE successfully captures the general correlation between the geometrical configurations and the MAEs. We explore the MAEs of 2583 other 2D MOFs using our trained TMINN model. From these two databases, we obtain 11 unreported 2D ferromagnetic MOFs with MAEs over 35 meV/atom, which are further demonstrated by the high-level density functional theory calculations. Such results show good performance of the extrapolation predictions of TMINN. We also propose some simple design rules to acquire 2D MOFs with large MAEs by building a Pearson correlation coefficient map between various geometrical descriptors and MAE. Our developed TMINN model provides a powerful tool for high-throughput screening and intentional design of 2D magnetic MOFs with large MAE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call