Abstract

Microorganisms can be programmed to perform chemical synthesis via metabolic engineering. However, despite an increasing interest in the use of de novo metabolic pathways and designer whole-cells for small molecule synthesis, the inherent synthetic capabilities of native microorganisms remain underexplored. Herein, we report the use of unmodified E. coli BL21(DE3) cells for the reduction of keto-acrylic compounds and apply this whole-cell biotransformation to the synthesis of aminolevulinic acid from a lignin-derived feedstock. The reduction reaction is rapid, chemo-, and enantioselective, occurs under mild conditions (37 °C, aqueous media), and requires no toxic transition metals or external reductants. This study demonstrates the remarkable promiscuity of central metabolism in bacterial cells and how these processes can be leveraged for synthetic chemistry without the need for genetic manipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call