Abstract

Nature has evolved diverse strategies to battle surface biofouling colonization and thus provides us novel insights into designing and developing advanced nontoxic antibiofouling materials and technologies. Mimicking the defense mechanisms of natural haloperoxidases in marine algae in response to biofilm colonization, here we show that the less active MoS2 shows efficient haloperoxidase-mimicking activity through judicious transition metal engineering. Cobalt-doped MoS2 (Co-MoS2) displays an excellent haloperoxidase-mimicking performance in catalyzing the Br- oxidation into germicidal HOBr, roughly 2 and 23 times higher than the nickel-doped MoS2 and pristine MoS2, respectively. Accordingly, Co-MoS2 shows an outstanding antimicrobial effect against drug-resistant bacteria and antibiofouling performance in real field tests in marine environments. The realization of robust haloperoxidase-mimicking activity of MoS2 via metal engineering may open a new avenue to design highly active transition metal dichalcogenides for antibacterial and antibiofouling applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call