Abstract

AbstractAtomically thick two‐dimensional transition metal dichalcogenides (TMDs) have been extensively studied as optoelectronic materials because of their distinctive electronic structures and outstanding photonic and catalytic properties. In particular, when the size of TMDs are decreased to the quantum scale, they possess wider bandgaps and higher surface‐to‐volume ratios with more active edge sites per unit mass. Hence, they are promising for use in sensor, battery, and electrocatalytic applications. In this study, we briefly review the various popular synthesis methods of TMD quantum dots (QDs) from top‐down and bottom‐up approaches. Then, we summarize the optical, electronic, and catalytic properties of TMD QDs. Furthermore, recent progress on electrochemistry, energy storage, and solar cell applications of TMD QDs is summarized in detail. Finally, we summarize current research bottlenecks of TMD QDs and discuss potential avenues for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call