Abstract

BackgroundThe importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione) and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-yl)hydrazono] indolin-2-one.ResultsMono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding viz. (NNO)2-, (NO)- and (NO) per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D4h- symmetry) and depend mainly on the mole ratio (M:L).ConclusionThe effect of the type of the metal ion for the same anion (Cl-) is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h) or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl-) except complex 5 (SO42-) in which it uses its lactam form. The obtained Pd(II)- complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D4h) geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt(II) > Copper(II) ≈ Palladium(II) >> Iron(III).

Highlights

  • The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound

  • The incorporation of the quinoline ring with the indole ring may enhance the biological activity of such class of compounds

  • Superiority of the binuclear Pd(II)- complex (8) against S. pyogenes bacteria [25,26]. d) The antimicrobial activity is highly influenced by the nature of the metal ion (Figure 4) and the order for Gram- positive bacteria (S. aureus) is as follows: Nickel(II) > Vanadyl(II) > Cobalt(II) > Copper(II) ≈ Palladium(II) >> Iron(III)

Read more

Summary

Results

Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding viz. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D4h- symmetry) and depend mainly on the mole ratio (M:L). Conclusion: The effect of the type of the metal ion for the same anion (Cl-) is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h) or the various modes of bonding. The obtained Pd(II)complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D4h) geometry. The antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt(II) > Copper(II) ≈ Palladium(II) >> Iron(III)

Background
Results and discussion
Conclusion and comments
Finar IL
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call