Abstract

Dialkylation of the 1,3-bis(1,2,4-triazol-1-yl)benzene with ethyl bromide results in the formation of [L-H2]Br2 which, upon salt metathesis with NH4PF6, readily yields the bis(triazolium) salt [L-H2](PF6)2 with non-coordinating counterions. [L-H2](PF6)2 and Ag2O react in a 1 : 1 ratio to yield a binuclear AgI-tetracarbene complex of the composition [(L)2Ag2](PF6)2 which undergoes a facile transmetalation reaction with [Cu(SMe2)Br] to deliver the corresponding CuI-NHC complex [(L)2Cu2](PF6)2. In contrast, the [L-H2]Br2 reacts with [Ir(Cp*)Cl2]2 to generate a doubly C-H activated IrIII-NHC complex 5. Similarly, the triazolinylidene donor supported diorthometalated RuII-complex 6 is also obtained. Complexes 5 and 6 represent the first examples of a stable diorthometalated binuclear IrIII/RuII-complex supported by 1,2,4-triazolin-5-ylidene donors. The synthesized IrIII-NHC complex 5 is found to be more effective than its RuII-analogue (6) for the reduction of a range of alkenes/alkynes via the transfer hydrogenation strategy. Conversely, RuII-complex 6 is identified as an efficient catalyst (0.01 mol% loading) for the β-alkylation of a wide range of secondary alcohols using primary alcohols as alkylating partners via a borrowing hydrogen strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.