Abstract

Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of Zn-air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen-doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl-template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851V), being comparable to that of Pt/C under alkaline conditions. X-ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co-N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn-air battery, which can deliver a large power density of 220 mW cm-2 and maintain robust cycling stability over 530 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.