Abstract

We discuss the impact of density functional electronic structure calculations for understanding the organometallic chemistry of transition metal (TM) surface complexes and clusters. Examples will cover three types of systems, mainly of interest in the context of heterogeneous catalysis: (i) supported carbonyl complexes of rhenium on MgO and of rhodium in zeolites, (ii) TM clusters with CO ligands and adsorbates, and (iii) metal clusters exhibiting chemical bonds with atomic carbon. The first group of case studies promotes the concept that surface groups of oxide supports are bonded to TM complexes in the same way as common (poly-dentate) ligands are bonded in coordination compounds. The second group of examples demonstrates various “ligand effects” of TM clusters. Finally, we illustrate how carbido centers stabilize TM clusters and modify the propensity for adsorption at the surface of such clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call