Abstract

Abstract Site-specific protein conjugation is a critical step in the generation of unique protein analogs for a range of basic research and therapeutic developments. Protein transformations must target a precise residue in the presence of a plethora of functional groups to obtain a well-characterized homogeneous product. Competing reactive residues on natural proteins render rapid and selective conjugation a challenging task. Organometallic reagents have recently emerged as a powerful strategy to achieve site-specific labeling of a diverse set of biopolymers, due to advances in water-soluble ligand design, high reaction rate, and selectivity. The thiophilic nature of various transition metals, especially soft metals, makes cysteine an ideal target for these reagents. The distinctive reactivity and selectivity of organometallic-based reactions, along with the unique reactivity and abundancy of cysteine within the human proteome, provide a powerful platform to modify native proteins in aqueous media. These reactions often provide the modified proteins with a stable linkage made from irreversible cross-coupling steps. Additionally, transition metal reagents have recently been applied for the decaging of cysteine residues in the context of chemical protein synthesis. Orthogonal cysteine protecting groups and functional tags are often necessary for the synthesis of challenging proteins, and organometallic reagents are powerful tools for selective, rapid, and water-compatible removal of those moieties. This review examines transition metal-based reactions of cysteine residues for the synthesis and modification of natural peptides and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.