Abstract

The incorporation of polar functional groups into polyolefins can significantly alter the adhesion, barrier and surface properties, dyeability, printability, and compatibility of the resulting “functional polyolefin”. Thus, the development of methods for the controlled synthesis of functional polyolefins from industrially relevant monomers holds the potential to expand the range of applications available to this already ubiquitous class of materials. In this Perspective, recent advances in transition-metal-catalyzed functional polyolefin synthesis will be reviewed. A common thread among the innovations discussed here is the perturbation of catalyst function by tailored design of the chelating ancillary ligand, aided in many cases by improved mechanistic understanding. Specific topics discussed here include rare examples of catalyst control over the regio- and stereochemistry of polar monomer insertion by phosphine–sulfonato palladium complexes (Drent-type), rate acceleration of insertion polymerization by binuclear cooperativity using salicylaldiminato nickel complexes (Grubbs-type), and formation of linear copolymers of ethylene and polar vinyl monomers using a cationic palladium catalyst ligated by a bisphosphine monoxide (BPMO) that contrasts the typical polymer microstructures formed by other cationic group 10 catalysts ligated by an α-diimine (Brookhart-type).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call