Abstract

Persistent sodium and calcium activated nonspecific cationic currents play important roles in the respiratory rhythm generation of the pre-Bötzinger complex. In this paper, we study the bursting patterns and their transition mechanisms in the two-parameter space of a two-cell network model of the pre-Bötzinger complex with synaptic coupling. Using the methods of fast/slow decomposition and two-parameter bifurcation analysis, we divide the two-parameter space into four different regions according to the multiphase oscillations, and reveal the possible transition mechanisms of bursting between these different regions. We also study the dynamics of the system with varying synaptic coupling strength. This work provides insights of how currents and synaptic coupling work on the respiratory rhythm generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call