Abstract

In light of the developments of the chiral constituent quark model (χCQM) in studying low energy hadronic matrix elements of the ground-state baryons, we extend this model to investigate their transition properties. The magnetic moments of transitions from the decuplet to octet baryons are calculated with explicit valence quark spin, sea quark spin and sea quark orbital angular momentum contributions. Since the experimental data is available for only a few transitions, we compare our results with the results of other available models. The implications of other complicated effects such as chiral symmetry breaking and SU(3) symmetry breaking arising due to confinement of quarks are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call