Abstract

Mount Shinmoe-dake, in the Kirishima volcanic group (in southern Kyushu, Japan), erupted in January 2011. The eruption style was initially phreatomagmatic, and then underwent a series of transitions from sub-plinian explosions to an extrusion of lava from the summit crater. The purpose of the present study is to investigate the cause of such changes in eruption styles, focusing on the conditions for the eruption to be non-explosive and for the lava effusion to cease. To examine the conditions in the conduit and magma chamber, a numerical code is devised, based on the one-dimensional steady flow model of Kozono and Koyaguchi (2010), who modeled a dome-forming eruption. We systematically search for a condition in which the magma would not be fragmented, but the initial volatile content in the magma chamber would remain constant and unchanged. We find that the high magma permeability and/or the high degree of lateral gas escape was needed for the eruption to be effusive, and we estimate the pressure decrement at the cessation of lava extrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.