Abstract

Neutron scattering experiments of Cr/V(001) superlattices are discussed, which show that the incommensurate spin-density-wave (SDW) in thick Cr layers becomes suppressed when the V spacer layers are loaded with hydrogen. The hydrogen loading triggers a transition from the incommensurate SDW state to a commensurate antiferromagnetic state. Model Hamiltonian calculations are presented, which show that this transition is not connected with the nesting property of the Cr Fermi surface. Instead, the transition is a manifestation of the antiferromagnetic ground state of Cr, which is separated from the incommensurate SDW state by an energy barrier. Hydrogen is identified as an effective trigger for reducing the activation barrier, enabling the system to relax to the ground state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call