Abstract

By an electromagnetic incompressible two-fluid model describing both ion temperature gradient drift modes (ηi modes) and resistive interchange modes (g modes), a new type of ηi mode is studied in cylindrical geometry including magnetic shear and an averaged curvature of Heliotron/Torsatron. This ηi mode is destabilized by the coupling to the unstable g mode. Finite plasma pressure beta increases the growth rate of this mode and the radial mode width also increases with plasma pressure beta indicating large anomalous transport in the Heliotron/Torsatron configuration. The transport from ηi mode exceeds that from resistive g when the mean-free-path exceeds the machine circumference. For plasma beta above two to three times the Suydam limit, the m=1/n=1 growth rate increases from the ηi mode value to the magnetohydrodynamic (MHD) value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.