Abstract

Fetal airway smooth muscle (ASM) exhibits phasic contractile behavior, which transitions to a more sustained "tonic" contraction after birth. The timing and underlying mechanisms of ASM transition from a phasic to a tonic contractile phenotype are yet to be established. We characterized phasic ASM contraction in preterm (128 day gestation), term (~150 day gestation), 1-4 month, 1 yr, and adult sheep (5yr). Spontaneous phasic activity was measured in bronchial segments as amplitude, frequency, and intensity. The mechanism of phasic ASM contraction was investigated further with a computational model of ASM force development and lumen narrowing. The computational model comprised a two-dimensional cylindrical geometry of a network of contractile units and the activation of neighboring cells was dependent on the strength of coupling between cells. As expected, phasic contractions were most prominent in fetal airways and decreased with advancing age, to a level similar to the level in the 1-4 month lambs. Computational predictions demonstrated phasic contraction through the generation of a wave of activation events, the magnitude of which is determined by the number of active cells and the strength of cell-cell interactions. Decreases in phasic contraction with advancing age were simulated by reducing cell-cell coupling. Results show that phasic activity is suppressed rapidly after birth, then sustained at a lower intensity from the preweaning phase until adulthood in an ovine developmental model. Cell-cell coupling is proposed as a key determinant of phasic ASM contraction and if reduced could explain the observed maturational changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.