Abstract

Fe-Cr alloys with 17–30% Cr show in H2-H2O-H2S mixtures at 1273 and 1073 K a transition from protective oxide scale formation to rapid sulfidation. The critical oxygen pressure to stabilize the oxide formation increases with increasing sulfur pressure of the gas and decreasing Cr content of the alloy. Cr2O3 with traces of Fe2O3 is formed under these conditions. Below the critical oxygen pressure, a primarily formed Cr2O3 film becomes overgrown by (Fe, Cr)S. The kinetic boundary of oxidation-sulfidation, which lies in the stability field (Fe, Cr)S + spinel Fe1+xCr2−xO4 of the Fe-Cr-O-S phase diagram, is explained with the help of the Fe-Cr-O-S phase diagram and the assumption that Fe diffuses faster through the (Cr, Fe)2O3 solid solution than does Cr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.