Abstract

In fragile X syndrome, the most common cause of inherited mental retardation, phenotypic expression has been linked to a region containing a repetitive sequence, (CGG)n, that appears to lengthen dramatically in fragile X patients and to show length variation in normal individuals. In order to investigate possible mechanisms responsible for further expansion of CGG in the normal population, we selected 31 normal unrelated X chromosomes carrying either the high-risk DX204-AC155 or DX196-AC151 haplotypes, as defined by the flanking microsatellites, DXS548 and FRAXAC2. Nearly 100% of CGGs with more than 35 repeats were found on DX204-AC155 haplotypes, with a mean length significantly higher and much more variable than in normal individuals carrying other haplotypes including the high-risk haplotype DX196-AC151. These findings suggest that the transition from the normal to the abnormal range occurs by a multistep process, a primary event, such as unequal crossing-over, leading to increased size and moderate instability of the repeat, and from which DNA polymerase slippage could lead to recurrent premutations. Our results also suggest that the upper limit of the normal range is roughly 35 repeats in the fragile X gene. The 36-54 repeats range would define an intermediate allele only observed, up to now, in DX204-AC155 fragile X chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.