Abstract
We show the existence of periodic exploding dissipative solitons. These non-chaotic explosions appear when higher-order nonlinear and dispersive effects are added to the complex cubic-quintic Ginzburg-Landau equation modelling soliton transmission lines. This counterintuitive phenomenon is the result of period-halving bifurcations leading to order (periodic explosions), followed by period-doubling bifurcations (or intermittency) leading to chaos (non-periodic explosions).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.