Abstract

Flow due to a commercially available vibrating quartz fork is studied in gaseous helium, He I and He II, over a wide range of temperatures and pressures. On increasing the driving force applied to the fork, the drag changes in character from laminar (characterized by a linear drive vs velocity dependence) to turbulent (characterized by a quadratic drive vs velocity dependence). We characterize this transition by a critical Reynolds number Recrdelta=Ucrdelta/nu, where Ucr is the critical velocity, nu stands for the kinematic viscosity, delta=sqrt[2nu/omega] is the viscous penetration depth, and omega is the angular frequency of oscillations. We have experimentally verified that the corresponding scaling Ucr proportional, sqrt[nuomega] holds in a classical viscous fluid over two decades of nu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.