Abstract

In this work we report experimental and theoretical results for the motion of single colloidal particles embedded in complex fluids with different interparticle interactions. The motion of particles is found to follow a similar behavior for the different systems. In particular, the transition from the short-time diffusive motion to the subdiffusive intermediate-time motion is found to occur when the square root of its mean squared displacement is in the order of 1 tenth of the neighbors' interparticle distance, thus following a quantitative criterion similar to Lindemann's criterion for melting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call