Abstract

Exciplexes of 9,10-dicyanoanthracene (DCA) with alkylbenzene donors in cyclohexane show structureless emission spectra, typical of exciplexes with predominantly charge-transfer (CT) character, when the donor has a relatively low oxidation potential (Eox ), e.g. hexamethylbenzene (HMB). With increasing Eox and stronger mixing with a locally excited (LE) state, vibrational structure begins to appear with 1,2,3,5-tetramethylbenzene and becomes prominent with p-xylene (p-Xy). A simple theoretical model reproduces the spectra and the radiative rate constants, and it reveals several surprises: Even in this nonpolar solvent, the fractional CT character of a highly mixed exciplex varies widely in response to fluctuations in the microscopic environment. Environments that favor the LE (or CT) state contribute more to the blue (or red) side of the overall spectrum. It is known that sparsely substituted benzene radical cations, e.g., p-Xy(•+) , are stabilized more in acetonitrile than the heavily substituted HMB(•+) . Remarkably, ion pairing with DCA(•-) in cyclohexane leads to even larger differences in the stabilization of these radical cations. The spectra of the low-Eox donors are almost identical except for displacements that approximately equal the differences in Eox , even though the exciplexes have varying degrees of CT character. These similarities result from compensation among several nonobvious, but quantified factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.