Abstract

Linked selection is a major driver of genetic diversity. Selection against deleterious mutations removes linked neutral diversity (background selection [BGS]) [1], creating a positive correlation between recombination rates and genetic diversity. Purifying selection against recessive variants, however, can also lead to associative overdominance (AOD) [2, 3], due to an apparent heterozygote advantage at linked neutral loci that opposes the loss ofneutral diversity by BGS. Zhao and Charlesworth [3] identified the conditions under which AOD should dominate over BGS in a single-locus model and suggested that the effect of AOD could become stronger if multiple linked deleterious variants co-segregate. We present a model describing how and under which conditions multi-locus dynamics can amplify the effects of AOD. We derive the conditions for a transition from BGS to AOD due to pseudo-overdominance [4], i.e., a form of balancing selection that maintains complementary deleterious haplotypes that mask the effect of recessive deleterious mutations. Simulations confirm these findings and show that multi-locus AOD can increase diversity in low-recombination regions much more strongly than previously appreciated. While BGS is known to drive genome-wide diversity in humans [5], the observation of a resurgence of genetic diversity in regions of very low recombination is indicative of AOD. We identify 22 such regions in the human genome consistent with multi-locus AOD. Our results demonstrate that AOD may play an important role in the evolution of low-recombination regions of many species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call