Abstract

Properties of the excited state of strong-coupling impurity bound polaron in an asymmetric quantum dot are studied by using linear combination operator and unitary transformation methods. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the impurity bound polaron as functions of the transverse and the longitudinal effective confinement lengths of the dot, the electron–phonon coupling strength and the Coulomb bound potential were derived. Our numerical results show that they will increase with decreasing the effective confinement lengths, due to interesting quantum size confining effects. But they are an increasing functions of the Coulomb bound potential. The first internal excited state energy is a decreasing function of the electron–phonon coupling strength whereas the transition frequency and the excitation energy are an increasing one of the electron–phonon coupling strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call