Abstract

In this paper, a fractional-order coinfection model for the transmission dynamics of COVID-19 and tuberculosis is presented. The positivity and boundedness of the proposed coinfection model are derived. The equilibria and basic reproduction number of the COVID-19 sub-model, Tuberculosis sub-model, and COVID-19 and Tuberculosis coinfection model are derived. The local and global stability of both the COVID-19 and Tuberculosis sub-models are discussed. The equilibria of the coinfection model are locally asymptotically stable under certain conditions. Later, the impact of COVID-19 on TB and TB on COVID-19 is analyzed. Finally, the numerical simulation is carried out to assess the effect of various biological parameters in the transmission dynamics of COVID-19 and Tuberculosis coinfection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.