Abstract
In this study, a light water-cooled small modular reactor (SMR) core loaded with special fuel assemblies composed of mixed oxide (MOX) fuel rods using UO2-TRUO2 and fully ceramic micro-encapsulated (FCM) fuel rods using TRUO2 was suggested and analyzed for transuranic (TRU) transmutation as an alternative option before the commercialization of sodium-cooled fast reactor (SFR). Especially, the FCM rods were loaded with only TRUO2 for deep burning of TRU. This study performed neutronic analysis of the transition cycle cores with the new fuel assemblies. In addition to the neutronic analysis, detailed analyses on two important issues for the light water-cooled reactor (LWR) core loaded with TRU were performed in fuel assembly level calculation. First, an effective burnable absorber design was searched to mitigate the degradation in effectiveness of the burnable absorber caused by the hardened neutron spectrum. Secondly, a reactivity decomposition analysis was performed for understanding quantitative nuclide-wise and reaction-wise contributions to the void reactivity which is a key safety parameter of TRU-bearing fuel assemblies. The analysis on the TRU mass flow through the transition cycles showed that a high net TRU consumption rate of 14.7% can be achieved at the equilibrium cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.