Abstract

AbstractHerein, fast fracture initiation in glacier ice is modeled using a Material Point Method and a simplified constitutive law describing tensile strain softening. Relying on a simple configuration where ice flows over a vertical step, crevasse patterns emerge and are consistent with previous observations reported in the literature. The model’s few parameters allows identification of a single dimensionless number controlling fracture spacing and depth. This scaling law delineates two regimes. In the first one, ice thickness does not play a role and only ice tensile strength controls the spacing, giving rise to numerous surface crevasses, as observed in crevasse fields. In this regime, scaling can recover classical values for ice tensile strength from macroscopic field observations. The second regime, governed by ice bending, produces large‐scale, deep fractures resembling serac falls or calving events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.