Abstract

The transition between a novel oil-in-dispersion emulsion and an oil-in-water (O/W) Pickering emulsion triggered by pH was achieved using alumina nanoparticles in combination with a cationic surfactant. In acidic and neutral aqueous media, positively charged particles and the surfactant both at very low concentrations costabilize an oil-in-dispersion emulsion with the surfactant adsorbed at droplet interfaces and particles dispersed in the aqueous phase between the droplets. In alkaline media, however, particles become negatively charged and are hydrophobized in situ by adsorption of the surfactant to become surface-active and stabilize an O/W Pickering emulsion. The transition between the two is also possible by lowering the pH. The transformation can be achieved several times in a mixture of 0.1 wt % nanoparticles and 0.01 mM surfactant. This transition is significant, since particles can be made to either adsorb at the oil-water interface, which is beneficial for applications like biphasic catalysis, or remain dispersed in the aqueous phase, which is favorable for their recovery and reuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.