Abstract

A series of isostructural reticular frameworks with systematic differences on chemical structures allows us to disclose correlations between specific structural factors and properties, providing insights for designing novel porous materials. However, even slight differences in the molecular structure often result in formation of non-isostructural polymorphic frameworks particularly in the case of hydrogen-bonded organic frameworks (HOFs) because the structures of HOFs are based on a subtle balance of reversible interactions. In this study, we found that three simple analogues of tetracarboxylic acids with naphthalene, quinoxaline, and pyrazinopyrazine cores (NT, QX, and PP, respectively) yielded isostructural solvated HOFs (NT-1, QX-1, and PP-1, respectively), where hydrogen-bonded sql-networked sheets were slip-stacked with closely similar manners. These isostructural HOFs underwent structural transformations in different manners upon removal of the guest solvents. Comparison of the crystal structures of the HOFs before and after the transformation revealed that intermolecular interactions of the core significantly affected on rearrangements of hydrogen bonds in the transformation. The results suggest the potential to control the properties and functions of isostructural HOFs by elemental doping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call