Abstract

Quantum–mechanical studies have predicted, and experimental studies on SrCu2O3 have confirmed, that the propagation of bound pairs on even-chain copper oxide ladders is possible, but not on ladders with an odd number of legs. To study whether this quantum–mechanical lattice parity effect has a classical analog, and to document the consequences of assuming different coupling scenarios between the ladder and adjacent sublattices, we develop a classical Markovian lattice-statistical model to monitor the efficiency of migration on a composite lattice. Regions of parameter space where significant departures from results obtained via a symmetrical random walk are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.